「.NET 開発基盤部会 Wiki」は、「Open棟梁Project」,「OSSコンソーシアム .NET開発基盤部会」によって運営されています。
学習フェーズでは、信号は逆方向に伝播する。
人間が(暗黙的な学習によって、)これらを判別することはできる。
従って、人間の脳も、一部は、このようなデータ駆動で動いているのかもしれない。
入力画像データから、本質的なデータを抽出できるように設計された変換器を指す。
ベクトル化された画像データを機械学習のSVMやKNNなどの識別器で学習させる。
特徴量についても機会が学習する。
ニューラルネットワークの出力と正解となる教師データの各要素の差の二乗の総和の2分の一。
2 E = 1/2 Σ (yk-tk) k
"""This is a test program.""" import numpy as np def mean_squared_error(yk, tk): """損失関数(2乗和誤差)""" return 0.5 * np.sum((yk - tk)**2) tk = np.array([0, 0, 1, 0, 0, 0, 0, 0, 0, 0]) yk = np.array([0.1, 0.05, 0.6, 0.0, 0.05, 0.1, 0.0, 0.1, 0.0, 0.0]) print(mean_squared_error(yk, tk)) yk = np.array([0.1, 0.05, 0.1, 0.0, 0.05, 0.1, 0.0, 0.6, 0.0, 0.0]) print(mean_squared_error(yk, tk))
0.0975
0.5975
E = - Σ tk log yk k
"""This is a test program.""" import numpy as np def mean_squared_error(yk, tk): """損失関数(交差エントロピー誤差)""" delta = 1e-7 # log(0)はマイナス∞になるのを微小な値を足して防止。 return -np.sum(tk * np.log(yk + delta)) tk = np.array([0, 0, 1, 0, 0, 0, 0, 0, 0, 0]) yk = np.array([0.1, 0.05, 0.6, 0.0, 0.05, 0.1, 0.0, 0.1, 0.0, 0.0]) print(mean_squared_error(yk, tk)) yk = np.array([0.1, 0.05, 0.1, 0.0, 0.05, 0.1, 0.0, 0.6, 0.0, 0.0]) print(mean_squared_error(yk, tk))
0.510825457099
2.30258409299
E = -1/N ΣΣ tnk log ynk n k
"""This is a test program.""" import numpy as np def mean_squared_error(ynk, tnk): """損失関数(交差エントロピー誤差)""" if ynk.ndim != 1: # 一次元化 tnk = tnk.reshape(1, tnk.size) print(tnk) ynk = ynk.reshape(1, ynk.size) print(ynk) batch_size = ynk.size # ynk.shape[0] print("batch_size:" + str(batch_size)) delta = 1e-7 # log(0)はマイナス∞になるのを微小な値を足して防止。 return - 1 / batch_size * (np.sum(tnk * np.log(ynk + delta))) TNK = np.array([[0, 0, 1, 0, 0, 0, 0, 0, 0, 0], \ [0, 0, 1, 0, 0, 0, 0, 0, 0, 0]]) YNK = np.array([[0.1, 0.05, 0.6, 0.0, 0.05, 0.1, 0.0, 0.1, 0.0, 0.0], \ [0.1, 0.05, 0.6, 0.0, 0.05, 0.1, 0.0, 0.1, 0.0, 0.0]]) print("mean_squared_error:" + str(mean_squared_error(YNK, TNK))) YNK = np.array([[0.1, 0.05, 0.1, 0.0, 0.05, 0.1, 0.0, 0.6, 0.0, 0.0], \ [0.1, 0.05, 0.1, 0.0, 0.05, 0.1, 0.0, 0.6, 0.0, 0.0]]) print("mean_squared_error:" + str(mean_squared_error(YNK, TNK)))