「.NET 開発基盤部会 Wiki」は、「Open棟梁Project」,「OSSコンソーシアム .NET開発基盤部会」によって運営されています。 散布図
TensorFlow・Kerasを使ったPythonでのDeep Learning
!pip install --upgrade pip
!pip install -U tensorflow
!pip install -U keras
!pip install numpy !pip install pandas !pip install seaborn !pip install statsmodels !pip install scikit-learn !pip install opencv-python
import warnings warnings.filterwarnings('ignore')
import pandas as pd import numpy as np import matplotlib.pyplot as plt %matplotlib inline
import tensorflow as tf from tensorflow.keras.layers import BatchNormalization print(tf.__version__)
import keras print(keras.__version__) # モデル定義 from keras.models import Model, Sequential, model_from_json from keras.layers import Dense, Input, Activation, Flatten, Dropout, LSTM from keras.layers.convolutional import Conv2D from keras.layers.pooling import MaxPool2D from keras.callbacks import EarlyStopping, ModelCheckpoint from keras import optimizers from keras.optimizers import SGD, Adam # その他 from keras.applications.vgg16 import VGG16 from keras.utils import np_utils
from sklearn import metrics from sklearn.metrics import confusion_matrix as cm from sklearn.model_selection import train_test_split
import cv2 # OpenCV
apt-get update && apt-get upgrade -y apt-get install -y libgl1-mesa-dev apt-get install -y libopencv-dev
from statsmodels.tsa.seasonal import seasonal_decompose
optimizer = optimizers.SGD(lr=0.01)
optimizer = optimizers.SGD(lr=0.01, momentum=0.9)
optimizer = optimizers.SGD(lr=0.01, momentum=0.9, nesterov=True)
optimizer = optimizers.Adagrad(lr=0.01, epsilon=None, decay=0.0)
es = EarlyStopping(monitor='val_loss', patience=5, mode='min', verbose=0) hist = model.fit(x_train_std , y_train, validation_data=(x_test_std, y_test), batch_size=batch_size, epochs=n_epoch, verbose=1, callbacks=[es]) # EarlyStoppingを適用
mc = ModelCheckpoint(monitor='val_loss', mode='min', verbose=1, filepath='./dl4', save_best_only=True) hist = model.fit(x_train_std , y_train, validation_data=(x_test_std, y_test), batch_size=batch_size, epochs=n_epoch, verbose=1, callbacks=[mc]) # ModelCheckpointを適用
model.add(BatchNormalization())
# 無効化比率0.5のDropout model.add(Dropout(rate=0.5))
# モデルはjson形式 json_string = model.to_json() with open('mnist.model', 'w') as f: f.write(json_string) # パラメータはhdf5形式 model.save_weights('param.hdf5')
# モデルはjson形式 with open('mnist.model', 'r') as f: json_string = f.read() model = model_from_json(json_string) # パラメータはhdf5形式 model.load_weights('param.hdf5')