「.NET 開発基盤部会 Wiki」は、「Open棟梁Project」,「OSSコンソーシアム .NET開発基盤部会」によって運営されています。 目次 †概要 †
バージョン †
ディストリビューション †
インストール †Anaconda †AnacondaによりPythonをインストールする。 Visual Studio Code †
ファースト・ステップ †インタプリタ(対話モード) †CMD or Anaconda Promptを起動する †Pythonインタプリタを起動する †
Pythonインタプリタの実行 †
Pythonインタプリタの終了 †対話モードを終了するには、 exit() を実行する。 スクリプトファイル †Pythonスクリプトファイルに保存 †テキストファイルに print("im hungry") と書いて、拡張子を*.pyとして保存する(例 hungry.py)。 Pythonスクリプトファイルを実行 †cdでカレントディレクトリに移動して、 >python hungry.py im hungry クラスの定義と実行 †
NumPy †Matplotlib †行列の計算 †多次元配列 †ベクトル †>>> import numpy as np >>> a=np.array([1,2,3,4]) >>> print(a) [1 2 3 4] >>> np.ndim(a) # 配列の次元 1 >>> a.shape # 配列の形状 (4,) >>> a.shape[0] # 次元の要素数 4 行列 †行列とは、
列↓ ┌ ┐ 行│○ ○│ →│ │ │○ ○│ └ ┘ >>> a=np.array([[1,2],[3,4],[5,6]]) >>> print(a) [[1 2] [3 4] [5 6]] >>> np.ndim(a) # 配列の次元 2 >>> a.shape # 配列の形状 (3, 2) 行列の積算 †A行列 * B行列 =C行列
2行2列の場合 †┌ ┐┌ ┐ ┌ ┐ │a1 b1││a2 b2│ │a1a2+b1c2 a1b2+b1d2│ │ ││ │ = │ │ │c1 d1││c2 d2│ │c1a2+d1c2 c1b2+d1d2│ └ ┘└ ┘ └ ┘ A行列 B行列 C行列 2行2列 2行2列 2行2列 x行y列の場合 †┌ ┐┌ ┐ ┌ ┐ │a1 b1││a2 b2 c2 d2│ │a1a2+b1e2 a1b2+b1f2 a1c2+b1g2 a1d2+b1h2│ │ ││ │ │ │ │c1 d1││e2 f2 g2 h2│ = │c1a2+d1e2 c1b2+d1f2 c1c2+d1g2 c1d2+d1h2│ │ │└ ┘ │ │ │e1 f1│ │e1a2+f1e2 e1b2+f1f2 e1c2+f1g2 e1d2+f1h2│ └ ┘ └ ┘ A行列 B行列 C行列 3行2列 2行4列 3行4列 ┌ ┐┌ ┐ ┌ ┐ │a1 b1││a2│ │a1a2+b1b2│ │ ││ │ = │ │ │c1 d1││b2│ │c1a2+d1b2│ └ ┘└ ┘ └ ┘ A行列 B行列 C行列 2行2列 2行1列 2行1列 メソッド †NumPyのdot(ドット積)メソッドを使用する。 >>> a=np.array([[1,2,3],[4,5,6]]) >>> b=np.array([[1,2],[3,4],[5,6]]) >>> c=np.array([[1,2],[3,4]]) >>> d=np.array([7,8]) >>> a array([[1, 2, 3], [4, 5, 6]]) >>> b array([[1, 2], [3, 4], [5, 6]]) >>> c array([[1, 2], [3, 4]]) >>> d array([7, 8]) >>> np.dot(a, b) array([[22, 28], [49, 64]]) >>> np.dot(b, c) array([[ 7, 10], [15, 22], [23, 34]]) >>> np.dot(b, d) array([23, 53, 83]) >>> np.dot(a, c) # A行列の列数とB行列の行数が一致しない。 Traceback (most recent call last): File "<stdin>", line 1, in <module> ValueError: shapes (2,3) and (2,2) not aligned: 3 (dim 1) != 2 (dim 0) 参考 †
|